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Liquid light condensates
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We show that a laser beam which propagates through a cubic-quintic nonlinear optical material may reach,
for a given power, a condensed state with a collisional dynamics resembling a liquid drop. We qualitatively
describe the analogies between this system and the usual fluids and show them by simulating numerically total
reflections of these beams with planar boundaries and localized defects. We use the analogy ‘‘liquid light’’ to
stress the connections with the dynamics of quantum fluids, including Bose-Einstein condensates.
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I. INTRODUCTION

If a laser beam is regarded as a gas of photons, two in
esting questions can be formulated: Would it be possible
produce something like a state of liquid light? and wh
physical properties will this peculiar state show? We w
demonstrate in the present paper that high-power laser be
and pulses which propagate through certain nonlinear op
materials, may reach a condensed state with physical be
ior resembling a~coherent! liquid droplet. We have per-
formed a numerical exploration of the properties of the
‘‘light droplets,’’ inspired by the physical picture of the su
face tension of the usual liquids. Our numerical simulatio
reveal that the collisions of light ‘‘streams’’~i.e., laser
beams! and droplets~i.e., laser pulsed beams! against bound-
aries and localized inhomogeneities show interesting an
gies with fluid mechanics. The calculations also demonst
that our theoretical predictions can be tested in the fram
current experiments with realistic materials.

Thus, we will begin by recalling some well-known effec
of laser beam propagation in cubic-quintic nonlinear med
which are the simplest optical materials where light cond
sates can be obtained. Next, we will analyze in detail
peculiar shape of the stationary states of the system and
mulate two simple ideal experiments to detect properties
‘‘light streams’’ and ‘‘light droplets’’ analogous to the surfac
tension of liquids. Finally, we performed the numeric
implementation of these ideas and found that light cond
sates do exhibit surface tension properties. We calculated
main parameters involved for realistic materials, in order
stimulate the experimental test of our predictions.

II. PHYSICAL MODEL

Thus, let us begin by recalling some well-known effec
concerning nonresonant laser propagation in nonlinear m
rials. In optical media presenting linear growth of the refra
tive index shift with light intensity~optical Kerr effect!, en-
velope solitons@1–3# can be produced for one-dimension
propagation. They can be obtained as pulses in optical fi
with anomalous dispersion~temporal solitons! or as continu-
ous beams in several planar configurations. On the o
hand, wild unstable phenomena like blowup and catastrop
1063-651X/2002/65~6!/066604~7!/$20.00 65 0666
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self-focusing take place for intense two-dimensional pro
gation in bulk Kerr-like materials@4#. However, collapse can
be limited if the nonlinear growth of the refractive inde
saturates for high powers, and thus stable two-dimensio
stationary beams can be obtained@5,6#.

In the present work, we will analyze the dynamical pro
erties of laser beams and pulses propagating through a
linear optical material with the following refractive index:

n~ I !5n01n2I 2n4I 2, ~1!

wheren0 , n2, andn4 are positive constants determining th
nonlinear response of the optical material with the intens
~I! of the light beam. This kind of refractive index represen
the so-called cubic-quintic optical materials@7–11# and it
can be considered as a Taylor expansion up toI 2 terms of
more complicated optical nonlinearities. The aboven(I )
grows with increasingI for low powers, and diminishes fo
high powers due to the contribution of the negativen4I 2

term. Very interesting examples of materials that corresp
to the refractive index of Eq.~1! are the recently reported

FIG. 1. Beam power~N! vs nonlinear phase shift (b) for sta-
tionary nodeless states. Solid line, numerical; dashed line, va
tional. Note that the power grows monotonically withb and there is
a gap (N0) at b50. Insets: beam shapes corresponding to sev
values of power. Note that the intensity scale at~a! is different.
©2002 The American Physical Society04-1
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nonlinearities of chalcogenide glasses@12#, which show an
intensity-dependent refractive index that can be fitted by
~1!. Our aim in the present paper will be to show that th
change in the sign of the nonlinear response with the in
sity leads to the formation of light condensates with physi
properties resembling those of fluids. These light cond
sates can be obtained in the form of continuous or pul
beams. Thus, we will use the termslight streamsand light
drops, respectively, to refer to each case.

We will analyze in the first place the propagation alongz,
in the paraxial regime, of a continuous linearly polariz
laser beam trough a nonlinear optical material with the ab
refractive indexn(I ). The dynamics of the envelope of th
electromagnetic waveC(x,y,z) is given by a generalized
nonlinear Schro¨dinger equation~NLSE! of the form @7#

2ikn0

]C

]z
1¹'

2 C12k2n0~n2uCu22n4uCu4!C50, ~2!

where k52p/l is the wave number in vacuum and¹'
2

5]2/]x21]2/]y2. Typical values of the above paramete

FIG. 2. Potential functions given by Eq.~4! of the nodeless
states~a!, ~b!, and~c! from Fig. 1.

FIG. 3. Resonance frequencies (n) of the nodeless states as
function of the beam power. Dashed~solid! lines correspond to
variational~numerical! calculations, as given by Eq.~7!.
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can be chosen to fit the usual experimental configurations
taking n051.8, n2'231023 cm2/GW, and n4'2
31024 cm4/GW2, with l51600 nm. Thus, nonlinear ef
fects become significant for values ofI in the range of
GW/cm2. The physical picture of the above nonlinearity
evident: for low intensities, propagation remains in a qua
linear regime. If the power is increased, nonlinear se
focusing tends to counteract diffraction and will overcome
for a critical beam flux. This would yield to blowup in pur
Kerr materials (n450). However, for high powers, the de
focusing effect of the termn4I 2 will balance collapse, yield-
ing a stable two-dimensional beam.

III. STATIONARY NODELESS STATES

Before analyzing the dynamics of laser beams, it is use
to take a look at the spatial profile of the lowest-order s
tionary solutions of Eq.~2!, which are nodeless wave func
tions of the formC5c(r )eibz, where b is the nonlinear
phase shift~propagation constant! and C(`)50. It can be
seen in Fig. 1 that the shape and properties of the ab
states depend crucially on the value ofb. In contrast to linear
waveguides~where there is only one fundamental mode w
a given b) nonlinear propagation yields a continuum
nodeless eigenstates. This is evident, since the nonli
beam generates its own waveguide during propagation. T
we have found by numerical integration the stationary sta
corresponding to Eq.~2! for increasing values of the nonlin
ear phase shift, starting fromb50. The result is a continuum
of stationary states with different shapes and increasing
ues of the beam powerN5* uCu2dxdy. Some of these spa
tial profiles are shown in the insets of Fig. 1.

The form of the stationary solutions of Eq.~2! has been
analyzed by several authors@13–15#. It is well known, for
instance, that there is a minimum power thresholdN0 to
generate a stationary beam. Obviously, this minimum be
flux coincides with the collapse power threshold for a Gau
ian beam in bulk Kerr media@16,17#. We must also point out
that there is a critical valuebc of the propagation constan
for which N diverges. Thus, forb.bc , no stationary solu-
tions can be obtained. Although there are good analyt
approximations for the shapes of previous stationary be
@15#, less attention has been paid to investigating the pecu
form of the spatial profiles of Fig. 1 from a physical point
view. Thus, let us try to extract a qualitative picture of t

FIG. 4. Sketch of the numerical simulation of Fig. 5, showi
total reflection at a nonlinear-linear interface.
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FIG. 5. Numerical simulation corresponding to the sketch of Fig. 4.~a!–~f! Gray scale images of the transversexy plane for different
values ofz ~in mm). ~g!–~l! Maximum intensity profiles along thex axis corresponding to the above gray scale images. The scale ofx
axis is the same in both top and bottom pictures.
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properties of the mentioned stationary beams, by analyz
the changes in the shape of the eigenstates of Eq.~2! for
growing values ofb.

As can be appreciated in Fig. 1, low values of the be
flux N ~i.e., b→0) lead to light distributions with quasi
Gaussian profiles. Asb is increased, the beam flux grow
and the spatial shapes tend to narrow, approximately kee
the Gaussian shape and reaching a minimum width an
maximum peak for an intermediate power. For larger val
of b, the beam flux grows rapidly and the peak intensity
the light distribution saturates due to the effect ofn4. The
light distributions tend to super-Gaussian profiles and t
high-power stationary beams yield wide flat-topped profil.
The slope at half maximum grows with the power and ten
to a maximum constant value, with the result that the sha
of high-power beams differ only in the length of the flat to
If we reconsider the previous scenario in the light of t
statistical mechanics of a ‘‘photon gas,’’ it resembles a ph
transition from a gas cloud into a liquid drop. The analo
would be as follows. In Eq.~2! the diffraction (¹2c) can be
interpreted as a kinetic term~thermal expansion of the pho
ton gas! and the nonlinearity can be regarded as a ‘‘cool
effect,’’ opposed to the kinetic term¹2c. Stable ‘‘light
06660
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streams’’ are formed due to the competing effects of diffra
tion, the Kerr term (n2), and the self-defocusing nonlinearit
(n4), similar to the way van der Waals forces form liqu
droplets in gas-liquid condensation. Thus, low-power bea
~i.e.,b→0, quasilinear regime! yield to Gaussian-like spatia
distributions with boundaries less sharp than in the case
high-power beams, where the distributions are close
super-Gaussian functions. The analogy is more evident in
case of pulsed beams, where ‘‘light droplets’’ will be o
tained. We will analyze this case in the last section of
present work.

Thus, if one assumes the previous picture, the next ste
to formulate ideal experiments to detect the typical behav
of liquids in the liquid light states mentioned, like the exi
tence of properties resembling surface tension.

IV. SMALL AMPLITUDE OSCILLATIONS

To get a deeper physical insight into the properties of
above light distributions, we performed a variational analy
of the frequency spectrum of the small amplitude oscillatio
of slightly perturbed stationary beams. The perturbation
be experimentally implemented with a thin lens, which ad
4-3
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FIG. 6. The same as Fig. 5 for total reflection at an 8mm air hole.
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a slight curvature to an input Gaussian beam. As we w
show, the beam will oscillate periodically like an elastic m
terial forced with an instantaneous perturbation. Thus,
frequency of the oscillations can be considered as a meas
ment of the rigidity of the stationary state. The variation
approach@13,14,18# starts by describing the evolution of th
beam by means of the following trial function:

C~r ,z!5c~z!expF2
r 2

2w2~z!
1 ib~z!r 2G , ~3!

wherec, w, andb are quantities depending onz, correspond-
ing to the peak amplitude, beam width and curvature, resp
tively. Following the standard variational procedure, af
minimization of the corresponding Lagrangian density o
the set of trial functions from Eq.~3!, an ordinary Newton-
like differential equation is obtained for the above parame
w. These equations can be reformulated in terms of effec
potentials for equivalent particles in the following form@14#:

P5S 1

k2n0
2

2
n2N

2pn0
D w221

2n4N2

9p2n0

w24. ~4!
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The widths of the perturbed beams evolve, oscillating arou
the minimum ofP, like classical particles in potential wells
z playing the role of time. In Fig. 2, we plot the shapes of t
previous potentials for three different values of the pe
power, corresponding to the shapes of the insets in Fig. 1
can be seen in the plot, the higherN, the deeperP. The
minimum width of the potential is achieved for the~b! eigen-
state. The variational analysis, although not exact, provi
the widths of the stationary statesws as a function of the
beam power. They are given by the values ofw for which P
is minimum. From a simple inspection of Eq.~4! the follow-
ing value for the width of the beam is obtained:

ws
25

8n4

9n2

N2

N2N0
, ~5!

whereN0 is the critical value for the beam flux,

N05
2p

k2n0n2

. ~6!
4-4
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The value ofN0 is the small gap in the beam power atb
50 of Fig. 1. It is straightforward to calculate the minimu
width wm of a stationary beam, which is achieved forN
52N0 and is given bywm5(8/3kn2)Apn4 /n0. For the ex-
perimental values given above, it is easily obtained thatwm
'6.4 mm, which gives peak powers in the range
2 GW/cm2 to generate the stationary states. Thus, the va
tional model predicts a minimum beam power to generate
stationary states that we numerically calculated above. O
ously, Eq.~6! coincides with the critical collapse thresho
for a Gaussian beam in a bulk Kerr material@17#. The com-
parison with direct numerical calculations, as can be app
ciated in Fig. 1, gives very good agreement~error below 1%!
for low values ofb. However, it must be stressed that, as t
shape of the stationary states deviates from the Gaussian
file, the fit of the theoretical and numerical curves is on
qualitative.

In the second place, notice that by expandingP around its
minimum it is possible to obtain the frequenciesn of small
amplitude oscillations alongz of perturbed stationary state
as functions of the main parameters involved, and thus
beams will behave as harmonic oscillators. Therefore, to
a more physical picture of the light condensates, it is in
esting to considern as a measure of the ‘‘rigidity’’ of the
oscillators corresponding to the different stationary sta
Hence, after a simple Taylor expansion around the minim
of P, we obtain

n5
9p

4A2k3n0
2n4

~N/N021!3/2

N2
. ~7!

In Fig. 3, we show a comparison between the variatio
formula ~7! and the numerically calculated frequencies
the different eigenstates of the system. To carry out this
culation, we have added a small curvature to each eigen
of the system, propagated them, and performed the Fou
transform of the amplitude oscillations. The variation
analysis reveals that a maximum rigidity of the light conde
sate is achieved for a given value ofN ~or equivalentlyb).
The critical value ofN corresponding to the maximum fre
quency can be easily calculated by takingdn/dN50, and is
given by

Ncr5
8p

k2n0n2

54N0 . ~8!

In Fig. 3, we observe that the variational method has o
a qualitative agreement with the numerical~solid line! calcu-
lation. We can argue thatNcr is a critical value for the be-
havior of the beams at total reflection. Over this value ofN,
the stationary states become flat topped and thus the
distributions will show a constant density of photons arou
the center of the beam, and a sharp decay at the boun
These beams will show a higher stability against small p
turbations at the boundary. This can be qualitatively und
stood by taking into account the fluid picture mention
above. If one considers that a gas-liquid phase transitio
taking place as the power is increased, the maximum rigi
06660
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will establish the gas-liquid frontier above which beams w
have some kind of surface tension that can block the em
sion of radiation at total reflection of the beam.

V. NUMERICAL SIMULATIONS

In the present section we analyze numerically the pro
gation of a light condensate through a bulk cubic-quin
nonlinear optical material in the presence of boundary c
ditions and localized inhomogeneities~holes!. The propaga-
tion equation for the above waveguide in the paraxial regi
is a generalized NLSE, including the effect of boundaries
holes. The experimental parameters are in the same rang
in the previous sections.

Our computer simulations show that there is a deep a
ogy between incompressible fluid dynamics and the inter
ence behavior of light condensates at boundaries and lo
ized discontinuities. This can be understood by thinking
light condensates as having some kind of ‘‘surface tensio
analogous to that of a liquid droplet. Considering that d
fraction in the NLSE plays the role of a kinetic energy ter
a Kerr-like material can be regarded as a ‘‘cold medium’’ th
tends to compress the photon gas~i.e., beam self-focusing!.
From this point of view, when collapse is stopped due

FIG. 7. Numerical simulation of the collision of a light dro
against a planar boundary~not visible in the graphs!. The values of
z in each picture are the distance of the center of the pulse to
origin of coordinates. The paper plane isxy andz is perpendicular
to the paper plane. The experimental parameters are given in
text.
4-5
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H. MICHINEL et al. PHYSICAL REVIEW E 65 066604
quintic defocusing terms, the situation is similar to drop
condensation due to van der Waals forces.

As in the case of liquids, one can expect surface tens
properties from the resulting light condensates. To show t
we present two particular cases from our numerical inve
gation. Both simulations correspond to a radial station
fundamental state of the propagation equation. The bea
25 mm wide and its peak intensity is 2.0 GW/cm2.

The numerical simulations were performed with stand
Fourier beam propagation method in a 1024-point grid.
Fig. 4, we show a sketch of the numerical calculations
Fig. 5, where we have simulated internal reflection insid
bulk cubic-quintic material surrounded by air. This can
done by adding to Eq.~2! a term 2k2n0Dn(x,y)C, n0
1Dn being the linear refractive index of the nonlinear m
terial. To simulate total reflection at a planar interface b
tween the nonlinear material and air, we chosen051.0 and
Dn50.8 for the half planex.0 andDn50 for x<0. The
interference pattern when the beam reaches the boun
clearly resembles crushing of a liquid drop thrown toward
solid wall which splits into smaller droplets. We have pe
formed a large series of numerical explorations for differ
angles of incidence, from the quasielastic to the comp
inelastic range, showing that the surface tension effect p
vides the beam with a high stability.

In Fig. 6 we plotted a collision with an 8mm air hole
immersed in the bulk nonlinear material. In this case, we
Dn50.8 inside a circle of 8mm radius andDn50 outside
it. The rest of the parameters are set equal to the prev
simulation. The effect is analogous to that of a surface t
sion: The beam is strangulated when it intersects the h
However, it recovers its original form if the angle of inc
dence is below a critical value. Both simulations show t
light condensates behave in a similar fashion to liqu
against collisional perturbations. The analogy with surfa
tension properties can be qualitatively understood as a
ance between the radiation pressure inside and outside
beam. Inside the beam, the refractive index is greater t
outside, due to the nonlinear effects. However, a deta
understanding of the phenomenon should start from a t
modynamical point of view, defining quantitative concep
like the temperature and entropy of the beams for a gi
nonlinearity. This is a deep problem that we leave to furt
research.

VI. PULSED BEAMS

If the beam is pulsed, time must be included in the sim
lations. Thus, an extra second derivative with respect
‘‘proper time’’ should be added to Eq.~2! in order to take
into account the effect of second-order dispersion. The
r-

06660
t

n
s,
i-
y
is

d
n
f
a

-
-

ary
a
-
t
te
o-

e

us
-

le.

t
s
e
l-

the
n
d
r-

n
r

-
o

r-

responding NLSE becomes 113 dimensional, and extra dif
ficulties are added to the numerical simulations. Not only
the increase in the length of the calculations inconvenient
so is the representation of the data obtained. The need
analytical tools like the variational model is more evident
this case.

Thus, taking into account the data obtained for the tw
dimensional case of laser beams, we will analyze the pr
erties of pulsed beams, which propagate in cubic-quintic m
terials, corresponding to the same material parameters a
the previous cases. The result is plotted in Fig. 7, where
have simulated the total reflection of a pulsed beam for
case of anomalous dispersion. It can be seen that the effe
the planar boundary between the nonlinear and the lin
material~not shown in the pictures! is to generate a corona o
droplets in a similar way as happens in the crushing o
liquid drop. In fact, the dominant effect in the generation
smaller pulses at the boundary is modulational instabi
@6,19–22# around the rings formed by diffraction.

We must note the deep connection of this case with
dynamics of Bose-Einstein condensates~BECs! in alkali-
metal gases. In fact, the collective dynamics of a BEC in
absence of a trapping potential is given by a NLSE which
usually called the Gross-Pitaevskii equation:

i\
]C

]t
1

\2

2m
¹2C1c1uCu2C2c2uCu4C50, ~9!

whereC is the wave function of the condensate andc1 and
c2 are positive constants describing, respectively, the ef
of a negative scattering length and repulsive three-body e
tic interactions. The previous equation for the coherent clo
is formally the same as Eq.~2!. Thus, it is evident that simi-
lar behavior as shown in Fig. 7 could be expected for BE
with an adequate experimental configuration. In fact,
possibility of gas-liquid phase transitions in Bose-Einste
condensates has recently been put forward by several au
@23#. This means that for dense enough BECs one co
expect a phase transition from a gas cloud to a~coherent!
liquid drop.

VII. CONCLUSIONS

In the present work we described the phenomenon of li
condensation in nonlinear optical materials with cub
quintic nonlinearity. To support the analogy between lig
condensates and liquids, we tested the surface tension p
erties of ‘‘light streams’’ and ‘‘light drops’’ by simulating
collisions against planar boundaries and localized inhomo
neities. Our predictions are fully verifiable in the frame
current experiments and open interesting connections
tween nonlinear optics and the dynamics of quantum flu
including Bose-Einstein condensates.
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